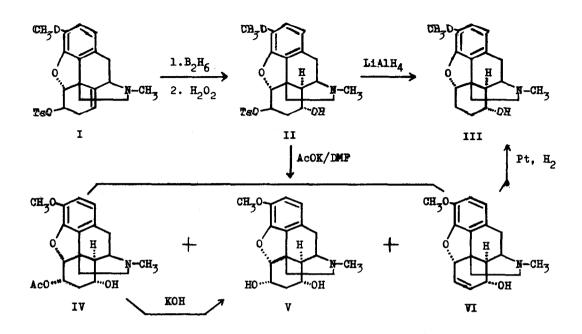
SYNTHESĮS OF B/C TRANS-MORPHINE H. Kugita, M. Takeda and H. Inoue Organic Chemistry Research Laboratory Tanabe Seiyaku Co., Toda, Saitama, Japan (Received 9 January 1967)

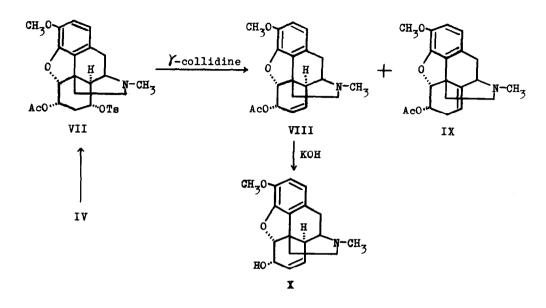

In a previous paper, we described the synthesis of a B/C <u>trans</u> morphine structure (III) by the hydroboration of Δ^8 -dihydrodesoxycodeine¹. This reaction was extended to some Δ^8 -derivatives bearing a substituent on the C-ring in the hope of obtaining various compounds of the B/C <u>trans</u> system for pharmacological evaluation. This communication concerns with the synthesis of <u>trans</u>-ccdeine and -morphine.*

Reaction of isoneopine (prepared in two steps from thebaine²) and toluenep-sulfonyl chloride in pyridine gave tosylisoneopine (I), $C_{25}H_{27}NO_5S^{**}$, m.p. 186-8°. Hydroboration of I in tetrahydrofuran and subsequent alkaline oxidation gave <u>trans</u>-6 β -tosyloxy-8 α -hydroxydihydrodesoxycodeine (II), $C_{25}H_{29}NO_6S$, m.p. 141-2° (benzene), in 74.6% yield with a recovery of I (15%). Reduction of II with lithium aluminum hydride gave the 8 α -hydroxy derivative (III), identical with the authentic compound. Boiling of II with potassium acetate in aqueous dimethylformamide gave a mixture which was chromatograghed on alumina to give the <u>trans</u>-6 α -acetoxy-8 α -hydroxy derivative (IV), $C_{20}H_{25}NO_5$, m.p. 161.5-2.5° (AcOEt-hexane), IR(Nujol) \mathcal{V}_{OH} 3200 cm⁻¹, \mathcal{V}_{C0} 1740 cm⁻¹, <u>trans</u>-6 α ,8 α -dihydroxy derivative (V), $C_{18}H_{23}NO_4$, m.p. 144.5-5.5° (AcOEt), IR(Nujol) \mathcal{V}_{OH} 3380 cm⁻¹, and <u>trans</u>-8 α -hydroxy- Δ^6 -derivative (VI), $C_{18}H_{21}NO_3$, m.p. 159-160.5° (AcOEt), IR (Nujol) \mathcal{V}_{OH} 3200 cm⁻¹, in 31, 19.4 and 17.4 % yield respectively. Hydrogenation

1277

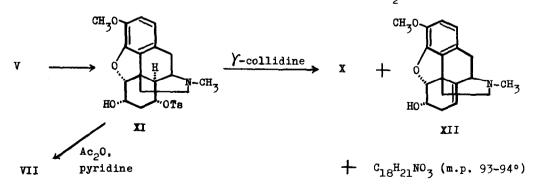
^{*} All the compounds having the B/C <u>trans</u> structure described herein will be called with the prefix <u>trans</u> in accordance with the Dr. Gates' naming appeared in <u>J. Am. Chem. Soc. 84</u>, 4125 (1962).

^{**} Satisfactory analyses were obtained for all the compounds described herein with the chemical formula.

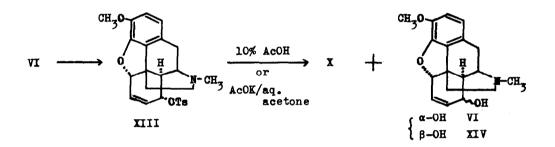


of VI with PtO_2 in acetic acid gave III. Heating of IV under the reaction condition described above (AcOK/aq.DMF) gave V in 22% yield with a recovery of IV (74%). Hydrolysis of IV with 4% KOH-ethanol also gave V. Acetylation of both IV and V with Ac₂O-pyridine gave an identical diacetate, $C_{22}H_{27}NO_6$, m.p. 140-1.5°. NMR spectra*** of IV, V, VI and the diacetate were in agreement with the assigned structure.****

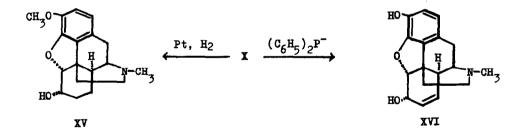
The 6a-acetoxy-8a-hydroxy derivative (IV), on reaction with toluene-psulfonyl chloride in pyridine gave the 8a-tosyloxy derivative(VII) in 92% yield, $C_{27}H_{31}NO_7S$, m.p. 162-3°. Heating of VII in Y-collidine under reflux gave two double bond isomers, <u>trans</u>-acetylcodeine(VIII) (41.5%), $C_{20}H_{23}NO_4$, m.p. 91.5-93° (hexane); IR(Nujol) γ_{C0} 1740 cm⁻¹; NMR 7-H (4.07, heptet), 8-H (3.437, quartet), 58-H (5.587, doublet), 68-H (4.367, quartet), and neopine acetate (41%) (IX); methiodide, m.p. 255-8° (Lit.³ 256-7°). This result was in parallel with an


NMR spectra were taken on a JNM-C-60 spectrometer (Japan Electron Optics Laboratory Co.) in CDCl₃(10-15%) with TMS as an internal standard.

^{****} Signal of 5-H of the diacetoxy derivative, centered at 5.67, has J(5-H, 6-H) = 4.5c.p.s. This shows that 6-H is <u>cis</u> to 5-H, hence that 6-AcO is <u>trans</u> to 5-H. α -Configuration of 6-AcO of IV as well as 6-OH of V is accordingly obvious.


analogous case reported previously¹. VIII, on heating with KOH in ethanol gave <u>trans</u>-codeine(X) in quantitative yield, $C_{18}H_{21}NO_3$, m.p. 98-102° (Et₂0), $[\alpha]_D^{25}$ = +61°(c=0.4 CHCl₃); IR(Nujol) V_{OH} 3200 cm⁻¹; NMR 58-H(5.6°C, doublet, $J_{6\beta}$ =5), 68-H (5.35°C, quartet, $J_{5\beta}$ =5, J_7 =6), 7-H(4°C, heptet, $J_{6\beta}$ =6, J_8 =9, J_{14} =3), 8-H(3.42°C, quartet, J_7 =9, J_{14} =3); hydrobromide, $C_{18}H_{22}NO_3Br$, m.p. 233-5°(EtOH).

Inspection of the molecular model of the 6,8-dihydroxy derivative(V) revealed a steric congestion around the 6a-hydroxy group larger than that around the 8a-hydroxy group. When V was tosylated with one mole of toluene-p-sulfonyl chloride in a usual manner only the 8a-tosyloxy derivative(XI) was obtained, $C_{25}H_{29}NO_6S$, m.p. 150-2°(EtOH); IR(Nujol) V_{OH} 3480 cm⁻¹, V_{SO_2} 1175, 1360 cm⁻¹.



Acetylation of XI with $Ac_2^{0-pyridine}$ gave VII. Heating of XI in γ -collidine under reflux gave X in 39.6%, neopine(XII) in 42%; hydrobromide, m.p. 277-9°⁴, and an unknown compound, $C_{18}H_{21}NO_3$, m.p. 93-4°, in 17% yield respectively.

 SN_2 , reaction has been known in morphine chemistry to occur when backside approach was hindered by steric crowding⁵. The 8a-tosyloxy derivative(XIII), m.p. 173-6°(benzene), prepared from VI in a usual manner, was heated with 10% acetic acid under reflux to give X in 8.9% yield, concomitantly obtained were VI(4.1%) and the 8p-hydroxy derivative(XIV)(35%), $C_{18}H_{21}NO_3$, 130-1°(AcOEthexane)^{******}; hydrochloride, m.p. 252-4°(EtOH-Et₂0). Heating of XIII with AcOKaq. acetone also gave the three products in a comparable yield respectively.

<u>Trans</u>-codeine(X) gave the dihydro derivative(XV) on catalytic hydrogenation with PtO₂; hydrochloride, $C_{18}H_{24}NO_3Cl$, m.p. 246-8°, IR(Nujol) V_{OH} 3409 cm⁻¹.

^{*****} A strong band due to an intramolecular OH-N was observed at 3255 cm⁻¹ with no sign of free OH (0.07 mole and 0.035 mole conc. in CCl₄), while the 8a-hydroxy derivative showed a band only at 3634 cm⁻¹ (free OH).

Demethylation of X was effected with diphenylphosphide ion⁶ to give transmorphine(XVI), $C_{17}H_{19}NO_3 \cdot CH_3OH$, m.p. 108-9°(CH_3OH), $[\alpha]_D^{20} = +80$ (c=0.13 CHCl₃); NMR 5β-H(5.77, doublet, $J_{6\beta}=5$), 6β-H(ca. 5.57), 7-H(4.17, heptet, $J_{8}=9$, $J_{6}=6$, $J_{14}=3$), 8-H(3.57, quartet, $J_7=9$, $J_{14}=3$), solvated $CH_3OH(6.67, 3H \text{ singlet})$; picrate, $C_{23}H_{22}N_4O_{10}$, m.p. 217-220°(EtOH-acetone). Demethylation with pyridine hydrochloride gave a trace of XVI.

REFFERENCES

- 1. H. Kugita and M. Takeda, Chem. Pharm. Bull. Japan, 13, 1422 (1965).
- S. Okuda, S. Yamaguchi and K. Tsuda, <u>Chem. Pharm. Bull. Japan</u>, <u>13</u>, 1092 (1965).
- 3. C. F. Duin, R. Robinson and J. C. Smith, J. Chem. Soc. 903 (1926).
- 4. L. F. Small, <u>J. Org. Chem</u>. <u>12</u>, 359 (1947).
- 5. H. L. Holmes and G. Stork, <u>The Alkaloids</u>, Vol. II, p. 180. Academic Press Inc. New York (1952).
- 6. F. G. Mann and M. J. Pragnell, J. Chem. Soc. 4120 (1965).